ВСЕРОССИЙСКАЯ ПРОВЕРОЧНАЯ РАБОТА ФИЗИКА

11 КЛАСС

Пояснения к образцу всероссийской проверочной работы

При ознакомлении с образцом проверочной работы следует иметь в виду, что задания, включённые в образец, не отражают всех умений и вопросов содержания, которые будут проверяться в рамках всероссийской проверочной работы. Полный перечень элементов содержания и умений, которые могут проверяться в работе, приведены в кодификаторе элементов содержания и требований к уровню подготовки выпускников для разработки всероссийской проверочной работы по физике. Назначение образца проверочной работы заключается в том, чтобы дать представление о структуре всероссийской проверочной работы, количестве и форме заданий, об уровне их сложности.

ВСЕРОССИЙСКАЯ ПРОВЕРОЧНАЯ РАБОТА

ФИЗИКА

11 КЛАСС

ОБРАЗЕЦ

Инструкция по выполнению работы

Проверочная работа включает в себя 18 заданий. На выполнение работы по физике отводится 1 час 30 минут (90 минут).

Оформляйте ответы в тексте работы согласно инструкциям к заданиям. В случае записи неверного ответа зачеркните его и запишите рядом новый.

При выполнении работы разрешается использовать калькулятор и линейку.

При выполнении заданий Вы можете использовать черновик. Записи в черновике проверяться и оцениваться не будут.

Советуем выполнять задания в том порядке, в котором они даны. Для экономии времени пропускайте задание, которое не удаётся выполнить сразу, и переходите к следующему. Если после выполнения всей работы у Вас останется время, Вы сможете вернуться к пропущенным заданиям.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

Желаем успеха!

Таблица для внесения баллов участника

Номер задания	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	Сумма баллов	Отметка за работу
Баллы																				

Код

Ниже приведены справочные данные, которые могут понадобиться Вам при выполнении работы.

Десятичные приставки

Наимено-	Обозначение	Множитель	Наимено-	Обозначение	Множитель
вание			вание		
гига	Γ	10 ⁹	санти	С	10^{-2}
мега	M	10^{6}	МИЛЛИ	M	10^{-3}
кило	К	10^{3}	микро	MK	10^{-6}
гекто	Γ	10^{2}	нано	Н	10^{-9}
деци	Д	10^{-1}	пико	П	10^{-12}

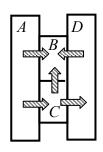
Константы	
ускорение свободного падения на Земле	$g = 10 \text{ m/c}^2$ $G = 6.7 \cdot 10^{-11} \text{ H} \cdot \text{m}^2/\text{kg}^2$
гравитационная постоянная	$G = 6.7 \cdot 10^{-11} \text{ H} \cdot \text{m}^2/\text{kg}^2$
универсальная газовая постоянная	R = 8.31 Дж/(моль · K) $c = 3 \cdot 10^8 \text{ м/c}$
скорость света в вакууме	
коэффициент пропорциональности в законе Кулона	$k = 9 \cdot 10^9 \text{ H} \cdot \text{m}^2 / \text{K} \text{m}^2$
модуль заряда электрона	$e = 1.6 \cdot 10^{-19} \text{ Km}$
(элементарный электрический заряд)	,
постоянная Планка	$h = 6,6 \cdot 10^{-34}$ Дж·с

ВПР. Физика. 11 класс

(1	1
\	1	-
•		_

Прочитайте перечень понятий, с которыми Вы встречались в курсе физики:

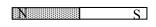
электромагнитная индукция, идеальный газ, гравитационное взаимодействие, точечный электрический заряд, идеальный блок, испарение жидкости.


Разделите эти понятия на две группы по выбранному Вами признаку. Запишите в таблицу название каждой группы и понятия, входящие в эту группу.

Название группы понятий	Перечень понятий

- Выберите два верных утверждения о физических явлениях, величинах и закономерностях. Запишите в ответе их номера.
 - 1) Сила Архимеда увеличивается с увеличением плотности тела, погружённого в жидкость.
 - 2) Импульс тела векторная величина, равная произведению массы тела на его ускорение.
 - 3) В процессе плавления кристаллических тел их температура остаётся неизменной.
 - 4) Разноимённые полюса постоянных магнитов отталкиваются друг от друга.

	7
	5) Силой Лоренца называют силу, с которой магнитное поле действует на движущиеся заряженные частицы.
	Ответ:
3	В истории известны случаи обрушения мостов, когда по ним проходил строй солдат, марширующих «в ногу». Дело в том, что в этих случаях частота шагов солдат совпадала с собственной частотой свободных колебаний моста, и он начинал колебаться с очень большой амплитудой. Какое явление наблюдалось в этих случаях?
	Ответ:


Четыре металлических бруска (*A*, *B*, *C* и *D*) положили вплотную друг к другу, как показано на рисунке. Стрелки указывают направление теплопередачи от бруска к бруску. Температуры брусков в данный момент равны 80 °C, 50 °C, 30 °C, 10 °C. Какой из брусков имеет температуру 80 °C?

Ответ: брусок .

(северный полюс затемнён, см. рисунок). К компасу поднесли сильный постоянный полосовой магнит, затем освободили стрелку, она повернулась и остановилась в новом положении. Изобразите новое положение стрелки.

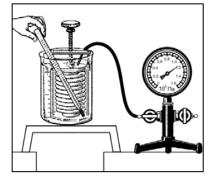
S

(6) Ядерная реакция, происходящая при бомбардировке ядер быстрыми протонами, была осуществлена на ускорителе в 1932 г. В процессе этой реакции ядра изотопа лития поглощают протон, и образуется два одинаковых ядра.

$${}^{7}_{3}\text{Li} + {}^{1}_{1}\text{H} \longrightarrow 2\text{X}$$

Используя фрагмент Периодической системы химических элементов Д.И. Менделеева, определите, ядра какого элемента образуются в этой реакции.

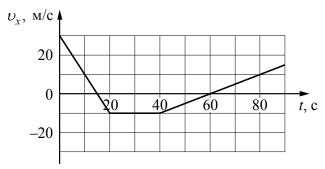
H 1,00797 Водород							2 4,0026 Гелий
Li 3 6,939	Be 9,0122	5 10,811 B	6 12,01115 C	7 14,0067 N	8 15,9994 O	9 18,9984 F	10 20,183 Ne
Литий	Бериллий	Бор	Углерод	Азот	Кислород		Неон


Ответ: ______.

Гофрированный цилиндр, в котором под закреплённым поршнем находится воздух, начинают охлаждать, поместив в сосуд с холодной водой (см. рисунок). Как будет изменяться концентрация молекул воздуха, а также давление воздуха в цилиндре по мере охлаждения?

Установите соответствие между физическими величинами и их возможными изменениями.

Для каждой величины определите соответствующий характер изменения:


- 1) увеличивается
- 2) уменьшается
- 3) не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Концентрация молекул воздуха в цилиндре	Давление воздуха в цилиндре

8

Мотоциклист движется по прямой улице. На графике представлена зависимость его скорости от времени.

Выберите два утверждения, которые верно описывают движение мотоциклиста. Запишите номера, под которыми они указаны.

- 1) В промежутке времени от 20 до 40 с равнодействующая сил, действующих на мотоциклиста, сообщает ему постоянное по модулю ускорение, отличное от нуля.
- 2) В течение первых 20 с мотоциклист двигался равноускоренно, а в течение следующих $20\ c$ равномерно.
- 3) Модуль максимальной скорости мотоциклиста за весь период наблюдения составляет 72 км/ч.
- 4) В момент времени 60 с мотоциклист остановился, а затем начал движение в противоположном направлении.
- 5) Модуль максимального ускорения мотоциклиста за весь период наблюдения равен 4 m/c^2 .

	Ответ:			
--	--------	--	--	--

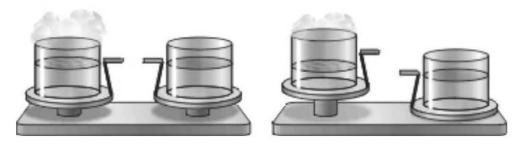
В паспорте электрического утюга написано, что его потребляемая мощность составляет 1,2 кВт при напряжении питания 220 В (см. рисунок). Определите сопротивление нагревательного элемента утюга.

Запишите решение и ответ. Ответ округлите до целого числа.

Решение:			
Ответ:			

(10)

С помощью амперметра проводились измерения силы тока в электрической цепи. Использовалась шкала с пределом измерения 8 А. Погрешность измерений силы тока равна цене деления шкалы амперметра.


Запишите в ответ показания амперметра с учётом погрешности измерений.

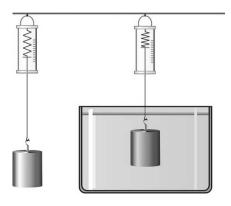
Ответ	A
;	

ВПР	Физика.	11	класс

Код	
-----	--

Учитель на уроке уравновесил на рычажных весах два одинаковых стакана с водой, только один стакан был заполнен холодной водой, а другой – горячей (см. рисунок).

Через некоторое время учитель обратил внимание учащихся на тот факт, что равновесие весов нарушилось: перевесил стакан с холодной водой.


С какой целью был проведён данный опыт?

Ответ:	
 •	

Baм необходимо исследовать, зависит ли выталкивающая сила, действующая на полностью погружённое в жидкость тело, от плотности жидкости.

Имеется следующее оборудование (см. рисунок):

- динамометр;
- сосуды с тремя жидкостями: водой, подсолнечным маслом и спиртом;
- набор из трёх сплошных стальных грузов объёмом 30 cm^3 , 40 cm^3 и 80 cm^3 .

В ответе:

- 1. Опишите экспериментальную установку.
- 2. Опишите порядок действий при проведении исследования.

Ответ:			
		_	

Код

(13)

Установите соответствие между примерами проявления физических явлений и физическими явлениями. Для каждого примера из первого столбца подберите соответствующее физическое явление из второго столбца.

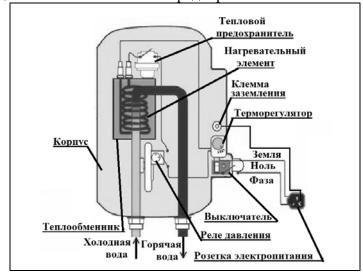
ПРИМЕРЫ ПРОЯВЛЕНИЯ ФИЗИЧЕСКИХ ЯВЛЕНИЙ

- А) при поднесении заряженной эбонитовой палочки бумажные лепестки султанчика притягиваются к ней
- Б) железные опилки ориентируются вблизи постоянного магнита

ФИЗИЧЕСКИЕ ЯВЛЕНИЯ

- 1) электризация проводника через влияние
- 2) поляризация диэлектрика в электрическом поле
- 3) намагничивание вещества в магнитном поле
- 4) взаимодействие постоянного магнита и проводника с током

Запишите в таблицу выбранные цифры под соответствующими буквами.


Ответ:

Α	Б

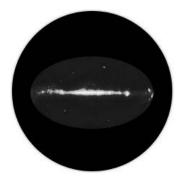
Прочитайте фрагмент технического описания проточного электрического водонагревателя и выполните задания 14 и 15.

Проточный электрический водонагреватель

Проточный электрический водонагреватель (ЭВН) предназначен для получения горячей воды, рассчитан на напряжение 220 В и потребляемую мощность 6 кВт. Вода, поступающая из водопровода (минимально допустимое давление равно 0,05 МПа), нагревается, проходя по теплообменнику из меди, в котором находятся нагревательные элементы. Температура воды задаётся либо регулировкой потока воды, либо терморегулятором. Выставленное на терморегуляторе значение температуры воды достигается через 15 с после включения ЭВН. В течение года температура холодной воды может колебаться от 5 °С до 20 °С. При минимально допустимом потоке 1,8 л/мин. вода нагревается на 40 °С, при меньшей величине потока воды ЭВН отключается автоматически, при температуре воды выше 90 °С тепловой предохранитель отключает ЭВН.

1/		
Код		

Правила эксплуатации


- 1. Запрещается эксплуатация ЭВН без заземления (для электропитания используется трёхполюсная розетка).
- 2. Подключение к сети должно производиться трёхжильным медным кабелем, рассчитанным на мощность ЭВН, но с сечением жилы не менее 4 мм².
- 3. ЭВН должен эксплуатироваться в отапливаемых помещениях.
- 4. Запрещается включать ЭВН при замерзании в нём воды.
- 5. Запрещается использовать воду, содержащую ил, ржавчину и т. п.
- 6. Запрещается выдёргивать вилку из розетки мокрыми руками.

14)	После включения электрического водонагревателя вода, текущая из крана, становится горячей спустя некоторое время. Объясните, почему.
	Ответ:
15	Почему нельзя использовать водонагреватель в неотапливаемом помещении в морозную погоду?
	Ответ:

Прочитайте текст и выполните задания 16, 17 и 18.

Гамма-излучение

Гамма-излучение было открыто в начале XX в. при изучении радиоактивного излучения радия. Гамма-излучение — широкий диапазон электромагнитного спектра, поскольку он не ограничен со стороны высоких энергий. Мягкое гамма-излучение с энергией от 100 кэВ образуется при энергетических переходах внутри атомных ядер. Более жёсткое, с энергией от 10 МэВ, — при ядерных реакциях. Существуют космические гаммалучи, которые почти полностью задерживаются атмосферой Земли, поэтому наблюдать их можно только из космоса.

На рисунке — фотография неба в гамма-лучах с энергией 100 МэВ. Обзор в диапазоне жёсткого гамма-излучения выполнен космической гамма-обсерваторией «Комптон», которая была запущена по программе NASA «Великие обсерватории» и с 1991 по 2000 г. вела наблюдения в диапазоне от жёсткого рентгена до жёсткого гамма-излучения. На фотографии отчётливо видна плоскость Галактики, где излучение формируется в основном остатками сверхновых. Яркие источники вдали от плоскости Галактики имеют в основном внегалактическое происхождение.

Гамма-кванты сверхвысоких энергий (от 100 ГэВ) рождаются при столкновении заряженных частиц, разогнанных мощными электромагнитными полями космических объектов или земных ускорителей элементарных частиц. В атмосфере они разрушают ядра атомов, порождая каскады частиц, летящих с околосветовой скоростью. При торможении эти частицы испускают свет, который наблюдают с помощью специальных телескопов на Земле.

Где и как образуются гамма-лучи ультравысоких энергий (от 100 ТэВ^1), пока не вполне ясно. Земным технологиям такие энергии недоступны. Самые энергичные наблюдаемые кванты (10^{20} – 10^{21} эВ) приходят из космоса крайне редко – примерно один квант в 100 лет на квадратный километр.

Гамма-кванты негативно воздействуют на организм человека и являются мутагенным фактором. Обладая высокой проникающей способностью, они ионизуют и разрушают молекулы, которые, в свою очередь, начинают ионизировать следующую порцию молекул. Происходит трансформация клеток и появление мутированных клеток, которые не способны исполнять свойственные им функции.

Несмотря на опасность таких лучей, их используют в различных областях, соблюдая

необходимые меры защиты, например для стерилизации продуктов, обработки медицинского инструментария и техники, контроля над внутренним состоянием ряда изделий, а также для культивирования растений.

В последнем случае мутации сельскохозяйственных культур позволяют использовать их для выращивания на территории стран, изначально к этому не приспособленных. Применяются гамма-лучи и при лечении различных онкологических заболеваний. Метод получил название лучевой терапии.

$\widehat{}$	J. T. T. T.
<u>(16)</u>	Вставьте в предложение пропущенные слова (сочетания слов), используя информацию из текста.
	Земные организмы защищены от воздействия космических гамма-квантов, так как они задерживаются Для наблюдения этого гамма-излучения используют гамма-телескопы, расположенные
17	Энергия кванта определяется по формуле $E = hv$. Оцените частоту гамма-излучения, образующегося при энергетических переходах внутри атомных ядер.
	Ответ:
18	Почему гамма-излучение используют для стерилизации продуктов и медицинских инструментов?

Ответ:

 $^{^{1}}$ 1 ТэВ = 10^{12} эВ; 1 эВ = $1, 6 \cdot 10^{-19}$ Дж.

Код

Ответы к заданиям

№ задания	Ответ	Баллы за задание
2	35	2 балла, если верно указаны два элемента ответа; 1 балл, если допущена одна ошибка или верно указан только один элемент ответа
3	резонанс	1 балл, если приведён верный ответ
4	A	1 балл, если приведён верный ответ
5		1 балл, если приведён верный рисунок
6	гелий	1 балл, если приведён верный ответ
7	32	2 балла, если верно указаны два элемента ответа; 1 балл, если допущена одна ошибка или верно указан только один элемент ответа
8	24	2 балла, если верно указаны два элемента ответа; 1 балл, если допущена одна ошибка или верно указан только один элемент ответа
10	$(5,4 \pm 0,2) \text{ A}$	1 балл
13	23	2 балла, если верно указаны два элемента ответа; 1 балл, если допущена одна ошибка или верно указан только один элемент ответа
16	атмосферой / атмосферой Земли на спутниках / искусственных спутниках / в космосе	1 балл
17	2·10 ¹⁹ Гц	1 балл

Критерии оценивания заданий с развёрнутым ответом

Возможный ответ		
Название группы понятий	Перечень понятий	
Физические модели	Идеальный газ, точечный электрический заряд, идеальный блок	
Физические явления	Электромагнитная индукция, гравитационное взаимодействие, испарение жидкости	

Указания к оцениванию	Баллы
Верно заполнены все клетки таблицы	2
Верно указаны названия групп понятий, но допущено не более двух ошибок при распределении понятий по группам. ИЛИ Приведено верное распределение по группам, но допущена ошибка в названии одной из групп	1
Другие случаи, не удовлетворяющие критериям на 2 и 1 балл	0
Максимальный балл	2

Возможный ответ

Используется формула для расчёта мощности электрического тока $P = \frac{U^2}{R}$, откуда $R = \frac{U^2}{P} = \frac{220^2}{1200} \approx 40 \text{ Om}$

$$P = \frac{U^2}{R}$$
, откуда

$$R = \frac{U^2}{P} = \frac{220^2}{1200} \approx 40 \text{ Om}$$

Указания к оцениванию		
Записана верная формула для вычисления сопротивления,	и получен верный ответ	2
с указанием единиц измерения		
Записана верная формула для мощности тока, н	но допущена ошибка	1
в математических преобразованиях или расчётах		
Другие случаи, не удовлетворяющие критериям на 2 и 1 балл		
	Максимальный балл	2

11

Возможный ответ

Скорость остывания воды зависит от разности температур воды и окружающей среды. / Скорость теплопередачи уменьшается при уменьшении разности температуры тел, участвующих в теплопередаче

Указания к оцениванию	Баллы
Представлен верный ответ	1
Ответ неверный.	0
или	
В ответе допущена ошибка	
Максимальный балл	1

12

Возможный ответ

- 1. Используется установка, изображённая на рисунке. Для проведения опыта используются сосуды с разными жидкостями и один из грузов.
- 2. Выталкивающая сила определяется как разница показаний динамометра при взвешивании груза в воздухе и в жидкости.
- 3. Выталкивающая сила, действующая на груз, определяется для двух или трёх жидкостей.
- 4. Полученные значения выталкивающей силы сравниваются

Указания к оцениванию	Баллы
Описана экспериментальная установка.	2
Указан порядок проведения опыта и ход измерения выталкивающей силы	
Описана экспериментальная установка, но допущена ошибка либо в описании	1
порядка проведения опыта, либо в проведении измерений	
Другие случаи, не удовлетворяющие критериям на 2 и 1 балл	0
Максимальный балл	2

 $\left(14\right)$

Возможный ответ

Разогрев нагревательных элементов требует времени. Пока не пущена вода и на нагревательные элементы не подано напряжение, они холодные. При протекании электрического тока с течением времени устанавливается равновесие между количеством теплоты, выделяющейся по закону Джоуля — Ленца в нагревательном элементе, и тем количеством теплоты, которое отдаётся воде. Поэтому заданное значение температуры не достигается мгновенно

Указания к оцениванию	Баллы
Представлено верное объяснение, не содержащее ошибок	1
Объяснение не представлено.	0
ИЛИ	
В объяснении допущена ошибка	
Максимальный балл	1

15

	Возможный ответ											
В	BI	ыклі	оченног	Л	водонагревател	е находито	R	вода, і	соторая	MO	жет з	амёрзнуть
В	неот	гапл	иваемог	ΛГ	помещении. При	замерзании	вод	ы трубк	и будут	разо	рваны,	и прибор
бу	дет	не	годен	К	эксплуатации.	Включение	неи	справно	о приб	opa	может	привести

к перегреву нагревательных элементов и пожару

Указания к оцениванию			
Представлено верное объяснение, не содержащее ошибок	1		
Объяснение не представлено.	0		
или			
В объяснении допущена ошибка			
Максимальный балл	1		

[18]

Возможный ответ

Гамма-излучение обладает ионизирующим действием, тем самым его воздействие способно разрушать ДНК имеющихся микроорганизмов, предотвращать их размножение и способствовать гибели. Облучённые продукты и инструменты становятся стерильными

Указания к оцениванию	Баллы
Представлен правильный ответ на вопрос, и приведено достаточное обоснование,	2
не содержащее ошибок	
Представлен правильный ответ на поставленный вопрос, но его обоснование не	1
является достаточным.	
ИЛИ	
Представлены корректные рассуждения, приводящие к правильному ответу, но	
ответ явно не сформулирован	
Другие случаи, не удовлетворяющие критериям на 2 и 1 балл	0
Максимальный балл	2